
Randomised Analysis of Backtracking based
Search Algorithms in Elucidating Sudoku

Puzzles Using A Dual Serial/Parallel Approach

Pramika Garg1[0000−0002−2867−3421], Avish Jha2[0000−0003−1479−0456], and
Amogh Shukla3[0000−0003−0357−6649]

1 SCOPE, Vellore Institute of Technology, Vellore TN 632014, India
micepram@gmail.com

2 SCOPE, Vellore Institute of Technology, Vellore TN 632014, India
avish.j@protonmail.com

3 SCOPE, Vellore Institute of Technology, Vellore TN 632014, India
amoghsh369@gmail.com

Abstract. Sudoku is a 9x9 grid-based puzzle. It is a game where each
row, column, and 3x3 box must have one instance of a number from 1-9.
In the present paper, we shall evaluate 3 different algorithmic approaches
both in serial and parallel configurations that can be utilised to solve a
puzzle of Sudoku to assess their comparative performance metrics for dif-
ferential randomly generated Sudoku data sets. We shall utilise Breadth
First Search, Depth First Search, Depth First Search with Breadth First
Search parallelisation for sub tress, for evaluating a large number of ran-
domly generated Sudoku puzzles with a varying number of clues to find
the best algorithm based on time and space complexity as well as clue
complexity. With this, we shall analyse and develop a best practice algo-
rithm that can be ideally used to solve a large number of puzzles in any
given situation in the most time-efficient manner. Our analysis has found
that there was a significant improvement in utilising the parallel algo-
rithm over both the Breadth First and Depth First search approaches
from 28% to over 56%. Even moving from Breadth First to Depth First
search we have gauged quite a moderate improvement in performance
from 15% to 21%.

Keywords: sudoku · algorithms · breadth first search · bfs · backtrack-
ing · depth first search · dfs · efficient sudoku solving · parallel sudoku ·
randomly generated dataset · randomised analysis.

1 Introduction

Sudoku puzzle is a logic-based game that was first mentioned in the Number
Place (1979) [1]. It was adopted by the Japanese as “Suuji Wa Dokushin Ni
Kagiru”, and later on, the name was shortened down to Sudoku in 2005, leading
to widespread popularity. It consists of a grid that is divided into squares. It
consists of varying sizes ranging from 4x4 grids to 16x16 grids.



2 P. Garg, A. Jha et al.

(a) A 4x4 Sudoku. (b) A 9x9 Sudoku.

Fig. 1: Unsolved Sudoku’s of Varying Sizes.

It can be generalised onto an NxN grid where the square root of N is a
positive integer. However, the Sudoku containing 9x9 grids is considered to be
conventional due to the large prevalence in its usage among people around the
world. Unsystematic numbers are assigned to the board in prior, where the
ultimate goal is to fill off the remaining empty spaces. There must be a one-of-a-
kind solution, with no repetitions permitted. Certain sets of rules and regulations
are required to be followed by every player which includes the following (for a
9x9 grid):

– Only numbers containing integer values from 1-9 can be used.
– All the nine squares must contain different numbers each within a larger 3x3

box.
– Each column or row should also contain all the numbers exactly once.
– All the squares must be filled.
– All the numbers should only be from 1-9.

The boxes are a set of nine 3x3 smaller grids that form the bigger grid. The
main principle of solving the game involves solving it by unraveling the squares
with values without breaking any of the rules of the game. The initial clues given
in the puzzle allow the game to have a start point. A Sudoku puzzle with 17 or
more clues (clues imply filled in squares) will have a unique solution. [2]

2 Related Works

The Sudoku is an NP complete problem which allows for quite a diverse vari-
ety of solutions. We have analysed multiple approaches used previously in the
upcoming text.

In [3], the authors use a stochastic search based algorithm that works with
underlying meta-heuristic techniques. They also utilise an simulated annealing



Randomised Analysis of Backtracking based Sudoku Parallel Algorithms 3

(a) Unsolved Sudoku (b) Solved Sudoku

Fig. 2: 9x9 Sudoku - Problem & Solution

based algorithm which uses a set of Markov chains. They have also proved the
existence of easy-hard-easy phase transitions in Sudoku puzzles of larger grid
sizes such as 16x16 & 25x25.

The authors in [4] propose a solution based on Constraint Programming,
treating the Sudoku as a Constraint Satisfaction Problem. They focus on both
the Enumeration Strategies of Variable Selection Heuristics as well as Value Se-
lection Heuristics, recognising their impact on performance. In Variable Selection
Heuristics, they cover both the Static & Dynamic Selection Heuristics Parame-
ters, and in Value Selection Heuristics, they cover Smaller, Greater, Average and
just Greater than Average Value of Domain to gauge the best performing param-
eters. Even in [5], the author Simonis, H. uses a Constraint Programming based
approach implements versions of ”Swordfish” and ”X-Wing” which use complex
propagation schemes in a more redundant nature with well defined constraints
such as colored matrix and defined cardinality. This leads to a stronger model
which they improve on further by using flow algorithms with bipartite matching.

Using State Space Search is another method of implementing a Sudoku solver
as [6] explores using both Breadth First Search and Depth First Search. It finds
that Depth First Search is more optimal for blind searching and it can be im-
plemented using a backtracking based approach. They compared a brute force
approach using both Breadth First Search and Depth First Search. They also
implemented both algorithms using a tree pruning technique which essentially
is backtracking.

Backtracking is an algorithmic approach to solve a Constraint Satisfaction
Problem which was approached as a Depth First Traversal of a Search Tree us-
ing varied Branching Techniques as described in detail in [7]. In [8], both the
authors have explored on the different forms of backtracking based search algo-
rithm and compared it against other approaches such as rule-set or Boltzmann
Machine. Hence, there has been research in the utilisation of these search algo-
rithms but all of these have been serial approaches, there has been none in a



4 P. Garg, A. Jha et al.

parallel methodology. This is what our research aims to fill the gap in since par-
allel processing is a major optimization as thread counts on Central Processing
Units keep on increasing.

3 Methodology

3.1 Challenges Involving Bias

The challenges will involve minimising the time as well as space complexity, due
to the nature of the Sudoku as well as the algorithms in question [9]. Sudoku is
well known to be an NP-Complete problem and backtracking-based heuristics
algorithms such as Backtracking based Depth First Search (DFS) & Breadth
First Search (BFS) provide an excellent methodology to prepare an efficient
solution [10].

In such a problem where we have a given Sudoku problem, and we need to
assess and determine a unique solution (we will analyse Sudoku puzzles with 17
or more given clues in the present paper), we have to use search algorithms to
perform a potential solution on the puzzle set. A random set of 1000 Sudoku
puzzles shall be generated via a process that first involves generating a full
Sudoku solution and then removing numbers as necessary to create a problem
with a prior specified number of clues. This process will be repeated 1000 times
to generate a random data-set of Sudoku puzzles with X number of clues, where
X may be an integer from 25 to 30.

3.2 Solution to the Challenges

This will ensure that we have a large set ensuring any bias if at all can be
eliminated via the large size of the trial and will allow the proper comparative
analysis of the four algorithms in both their serial and parallel implementations.
For each X from 25 to 30 the data-set shall be tested to all the algorithms and the
analysis will be done in such a way as to see if any algorithm outpaces another
based on the number of clues given to the algorithm at the start. This will
allow in the future an algorithm to be developed that utilises the best algorithm
amongst these for each specific situation based on the input size, ensuring an
efficient solution can be employed. This may lead one to believe that the more
the number of clues, the easier it is to solve, but it is far from the truth, as it
is highly situational. A puzzle with 25 clues may indeed be harder to solve than
one with 17. [11]

3.3 Implementation

In the proposed algorithm we shall employ the Backtracking based Breadth First
Search Algorithm in a serial configuration and we will analyse the performance
of the algorithm over a random data-set of size 1000 with varying X (25-30). In
a similar manner, the same process will be repeated for the Backtracking based



Randomised Analysis of Backtracking based Sudoku Parallel Algorithms 5

Depth First Search to determine the best possible configuration that works for
each test case (where a test case is defined is when X has a specific value from
25 to 30). Then the Depth First Search with a parallel sub-tree Breadth First
Search algorithm shall be used to determine and analyse the improvement that is
brought by utilising a parallel core architecture compared to a serialised solution.
We have utilised a graph data structure based on Constraint Graph structure
for the final code.

3.4 Specification of Test Platform

For conducting a test with no other factors playing a role in the results, we
decided to approach this with a brand new fresh copy of Windows 10 LTSC,
Python 3.8. The code was entirely written in python and it was set to utilise a
single virtual thread for both the Serial Breadth First Search and Depth First
Search implementation, whereas the parallel algorithm utilised 6 virtual threads.
Each test ran within its virtual environment, with identical system utilisations.
Each test was run at an interval of 1 hour before the previous to allow for
heat dispensation on the Intel 8th Generation CPU. Each test ran including the
generation of 1000 different random Sudoku puzzles of the given clue number.

4 Serial Breadth First Search

4.1 What is it?

Breadth First Search is a crucial search algorithm consisting of data structures
for graphical representation. It is heavily utilised for traversing graph or tree-
based structures. It is an uninformed graph search strategy that moves from
level to level ensuring that each level is fully searched before moving on to the
next deeper level. [12] It traverses a graph structure in a breath-ward direction
starting from the first vertex and follows the below-mentioned rule-set strictly.

In the current situation where we implement Breadth First Search in Sudoku,
we will take the first position on the Top-Left as the initial or first vertex. Each
square is represented as a vertex with 2 possible states, visited and unvisited. A
queue is then used by the algorithm as it executes, as mentioned below.

4.2 Algorithm

1. From the current vertex, find all the adjacent unvisited vertexes.

2. Visit each vertex as found from Step 1, and add it to a queue.

3. If the current vertex has no adjacent vertex, then dequeue the first vertex
from the queue.

4. Repeat the first three steps till all the vertices have been visited.



6 P. Garg, A. Jha et al.

4.3 Results

The algorithm is implemented serially utilising the above rule-set and the fol-
lowing are the results after 1000 randomly generated Sudoku are processed for
each of the initial numbers of clues from 25 to 30.

Fig. 3: BFS - Average Mean Time of 100 Random Puzzles (ms) in Y — Number
of Clues in X

5 Serial Depth First Search

5.1 What is it?

Depth First Search (also known as Depth First Traversal) is a graph-cum-tree
traversal and search algorithm that works on the Artificial Intelligence algorith-
mic approach of Backtracking [13]. The algorithm starts from a root node and
moves down one of the branches fully till it reaches the end, if the answer is
found along the way, then it stops, else it utilises the backtracking methodology.
It continues this till the answer is found, with the eventual goal of visiting all
the unvisited vertices. The backtracking methodology can be implemented via a
recursive approach to allow for better time and space complexity [14].

In the current implementation of Depth First Search to port it to Sudoku,
we will take the first position on the Top-Left as the initial or first vertex. Each
square is represented as a vertex in the algorithm with 2 possible states, visited
and unvisited. A queue is then utilised by the DFS algorithm while it executes,
as mentioned below.



Randomised Analysis of Backtracking based Sudoku Parallel Algorithms 7

5.2 Algorithm

1. Take the first position in the Sudoku and put it as the starting vertex and
place it onto a stack.

2. Mark the vertex on the top of the stack as visited.
3. Find all the adjacent vertices from the current vertex and store them in a

list.
4. Add the unvisited ones from the list to the stack.
5. Repeat Steps 2 to 4 till all vertices are visited.

5.3 Results

The algorithm is created in a serial configuration utilising the above rule-set
and below mentioned are the results after 1000 randomly generated Sudoku are
processed for each of the initial numbers of clues from 25 to 30.

Fig. 4: DFS - Average Mean Time of 100 Random Puzzles (ms) in Y — Number
of Clues in X

6 Parallel Dual DFS & BFS based Algorithm

6.1 What is it?

Parallel Depth First Search with sub-tree Breadth First Search is an approach
that involves setting a search depth till which a serial Depth First Search will be
run and after which a number of Breadth First Search threads shall be spawned
which will each have a sub-queue as well as access to a global queue to prevent
multiple copies of the Sudoku needing to be creating which would require much
more memory leading to higher space complexity. The Breadth First Search
threads run in parallel till the unique solution for the Sudoku is found.



8 P. Garg, A. Jha et al.

6.2 Algorithm

1. A search depth is chosen.
2. Initially Depth First Search is run till the chosen depth serially with a similar

rule-set as formerly given.
3. From the search depth, a set of parallel threads are spawned which run at

the same time with a global queue to solve till the end of the Sudoku is
reached.

4. The Breadth First Search nodes run in parallel utilising sub-queues and the
global queue.

6.3 Results

The algorithm is created in a parallel configuration utilising the above rule-set
so that till the pre-defined search depth, Depth First Search is run serially after
which it spawns multiple Breadth First Search nodes running in parallel for the
rest of the depth of the Sudoku and below mentioned are the results after 1000
randomly generated Sudoku are processed for each of the initial numbers of clues
from 25 to 30.

Fig. 5: Parallel Mixed DFS & BFS - Average Mean Time of 100 Random Puzzles
(ms) in Y — Number of Clues in X

7 Visualisations & Analysis

Utilising the large mirage of data we collected from our testing, we can have 2
different outlooks, one based on the individual clues for each algorithm, and an
overall analysis where we average out the performance across different numbers
of clues.



Randomised Analysis of Backtracking based Sudoku Parallel Algorithms 9

7.1 25 Clues

When we take the initial number of clues to be 25, it can be analysed that
moving from Serial Breadth First Search to Serial Depth First Search we see an
improvement of over 15.86826%. Now, if we compare the Parallel Dual Depth
First Search with Breadth First Search with the serial Breadth First Search
algorithm we mark an improvement on 41.16766% which is quite significant.
Moving from Serial Depth First Search to the Parallel algorithm we see an
improvement of about 28.38926%.

Fig. 6: Comparing the performance of 25 vs 26 Initial Clues

7.2 26 Clues

When the number of clues is taken to be 26, observations state an increase
of 15.12915%, while moving from Serial Breadth First Search to Serial Depth
First Search. In addition to that, the Parallel version of Depth First Search
and Breadth First Search shows a notable increase of 44.83394% over Serial
Breadth First Search, which concludes that the performance of the Paralleled
implementation of Depth First Search and Breadth First Search is higher than
the serial implementation of Breadth First Search. When comparing the Parallel
Dual Depth First Search with Breadth First Search method to the Serial Depth
First Search algorithm, enhancement of 35.15724% is beheld.



10 P. Garg, A. Jha et al.

7.3 27 Clues

Analysing the bar plot for 27 clues, we see an improvement of about 18.73922%
continuing the pattern of Serial Depth First Search being more efficient than
Serial Breadth First Search. In comparison to the previous analysis, the drop
from Serial Depth First Search to the Parallel algorithm is on the higher end at
51.34924%, while the gain in performance moving from the Serial Depth First
Search to the Parallel algorithm stays around 38.47207%.

Fig. 7: Comparing the performance of 27 vs 27 Initial Clues

7.4 28 Clues

In the case of 28 clues, we see a gain in performance of approximately 21.47925%
moving from Serial Breadth First Search to Serial Depth First Search. If we
switch from the Serial Breadth First Search algorithm to the Dual Parallel algo-
rithm we see a gain of over 52.64389% in performance. Whereas, moving from
Serial Depth First Search to the Dual Parallel algorithm we see an improvement
of 39.82891%.

7.5 29 Clues

Starting off with 29 clues, we are able to analyse that moving from Serial Breadth
First Search to Serial Depth First Search we get an improvement of about
17.57393%, but there is a major improvement with over the doubling of speed



Randomised Analysis of Backtracking based Sudoku Parallel Algorithms 11

moving from Serial Breadth First Search to the Dual Parallel algorithm with
over 53.73929% improvement. The movement from Serial Depth First Search to
the Dual Parallel algorithm is again a pretty sharp increase in performance by
about 41.32907% which is anomalously higher than the previous cases.

Fig. 8: Comparing the performance of 29 vs 30 Initial Clues

7.6 30 Clues

In this section, we analyse the performance where 30 clues are given initially, and
we see an improvement of 19.28571% jumping from Serial Breadth First Search
to Serial Depth First Search. Moving from the Serial Breadth First Search to the
Parallel algorithm, we see a large improvement of over 56.38127% which confirms
that this parallel algorithm continues to become more and more efficient as the
number of clues is increased. The jump from Serial Depth First Search to the
Parallel algorithm is quite on the higher end at 35.82937% suggesting that the
Parallel algorithm starts to gain an advantage over the Serial Depth First Search
algorithm with an increasing number of clues.

8 Conclusion

With the Averaging our the values as shown in Figures 3, 4 and 5, we can see that
there is an improvement of approximately 20.79027% as we utilise Backtracking
based Depth First Search over Breadth First Search which can be attributed to
the benefits that backtracking brings to Depth First Search and hence it can be



12 P. Garg, A. Jha et al.

Fig. 9: Overall Summary of Execution Time

Fig. 10: Comparison of Percentage of Improvement



Randomised Analysis of Backtracking based Sudoku Parallel Algorithms 13

Fig. 11: Average Execution Time of the 3 Algorithms

determined that a serial implementation of Depth First Search will uniformly
perform better than a serialised implementation of Breadth First Search.

Percentage Improvement

Number of Clues BFS to DFS BFS to Parallel DFS to Parallel

25 15.86826% 41.16766% 28.38926%
26 15.12915% 44.83394% 35.15724%
27 18.73922% 51.34924% 38.47207%
28 21.47925% 52.64389% 39.82891%
29 17.57393% 53.73929% 41.32907%
30 19.28571% 56.38127% 35.82937%

Table 1: This table shows the percentage gain as we move from Algorithm A to
Algorithm B for all 3 possible permutations.

From the previous set of analysis at individual clue levels, we can notice that
the performance gap between Serial Breadth First Search and Serial Depth First
Search is approximately 20% constantly irrespective of the change in the initial
number of clues. The major improvement occurs in the switch from Serial Depth
First Search to the Dual Parallel Depth First Search with Breadth First Search



14 P. Garg, A. Jha et al.

algorithm which ensues a constant performance gain with the increase in the
number of clues, from about 28% to over 35%.

The Parallel version of Depth First Search utilising Breadth First Search for
its sub-trees is a major improvement over serial Breadth First Search and even
over serial Depth First Search. It manages to uphold a humongous 39.35643%
over the Serial Breadth First Search Implementation. Though, it is to be noted,
that this was with 6 parallel Breadth First Search threads that were launched af-
ter the pre-defined search depth has been reached. Even though utilising Breadth
First Search partially in this algorithm would be expected to offer a slowdown
compared to the backtracking based highly performant serial Depth First Search,
the threaded Breadth First Search absorbs the complexity increase due to par-
allelisation and it still comes out ahead majorly of the serial Depth First Search
with a 23.43783% improvement.

Overall we can see there is an immense improvement in the real world per-
formance of our algorithm even though the time complexity is rather unchanged
from that of Serial Depth First Search & Serial Breadth First Search. The novelty
of our approach is adding the concept of parallelisation on not just a single algo-
rithm rather combining 2 algorithms in usch a way that not only do we reap the
benfits of parallelisation, we also get the best from both the algorithms. Hence,
we can conclude that such a parallel approach is the best algorithm amongst the
studied to solve a given Sudoku puzzle.

References

1. Garns, H.: Number place. Dell Pencil Puzzles & Word Games (1979)
2. Delahaye, J. P.: The science behind Sudoku. Scientific American, 294(6), 80-87,

(2006).
3. Lewis, R.: Metaheuristics can solve sudoku puzzles. Journal of heuristics, 13(4),

387-401, (2007).
4. Crawford, B., Aranda, M., Castro, C., & Monfroy, E.: Using constraint programming

to solve sudoku puzzles. In 2008 Third International Conference on Convergence and
Hybrid Information Technology, Vol. 2, pp. 926-931. IEEE, (2008).

5. Simonis, H.: ”Sudoku as a constraint problem.” CP Workshop on modeling and
reformulating Constraint Satisfaction Problems. Vol. 12. Citeseer, (2005).

6. Eremic, M., Adamov, R., Bilinac, N., Ognjenovic, V., Brtka, V., & Berkovic, I.:
COMPARISON OF STATE SPACE SEARCH ALGORITHMS-SUDOKU PUZZLE
GAME. Chief and responsible editor, 154, (2013).

7. Van Beek, P.: ”Backtracking search algorithms.” Foundations of artificial intelli-
gence. Vol. 2. Elsevier, 85-134, (2006).

8. Berggren, P., & Nilsson, D.: A study of Sudoku solving algorithms. Royal Institute
of Technology, Stockholm, (2012).

9. Pathak, M. J., Patel, R. L., & Rami, S. P.: Comparative Analysis of Search Algo-
rithms. International Journal of Computer Applications, 179(50), 40-43, (2018).

10. Yato, T., & Seta, T.: Complexity and completeness of finding another solution
and its application to puzzles. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 86(5), 1052-1060, (2003).

11. A study of Sudoku solving algorithms, https://cutt.ly/zb2GfyN. Last accessed 18
May 2021



Randomised Analysis of Backtracking based Sudoku Parallel Algorithms 15

12. Bundy, A., & Wallen, L.: Breadth-first search. In Catalogue of artificial intelligence
tools (pp. 13-13). Springer, Berlin, Heidelberg, (1984)

13. Chen, L., Guo, Y., Wang, S., Xiao, S., & Kask, K.: Sudoku Solver, (2016).
14. Stone, H. S., & Sipala, P.: The average complexity of depth-first search with back-

tracking and cutoff. IBM Journal of Research and Development, 30(3), 242-258,
(1986).

15. Multi-threaded algorithm for solving Sudoku,
https://stackoverflow.com/a/850892. Last accessed 18 May 2021.


